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ABSTRACT - The primary requirement of nexl-generation entry descent
and landing (EDL) systems is to reduce the size of the landing zone for
a Martian lander from hundreds of kilometers to under ten kilometers.
The NASA effort, led by the Jet Propulsion Laboratory, relies on several
techniques never before utilized at Mars which require accurate knowledge
of the position, velocily, and attitude of the spacecraft in real time. This
focus of this paper is the interaction of the aided-navigation system with
the rest of the flight system. Results from simulated EDL scenarios will be
presented.
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INTRODUCTION

The primary requirement of the next generation entry descent and landing (EDL) systems is to
reduce the size of the landing zone for a Martian lander from the currently acceptable uncertainty
of hundreds of kilometers to under ten kilometers. The NASA effort, led by the Jet Propulsion
Laboratory, relies on several techniques never before utilized at Mars, namely, a guided entry and
an altitude-velocity dependent parachute deploy logic. The proposed Mars Smart Lander will be
the first demonstration of a real-time onboard precision navigation and guidance capability at
Mars. In addition to reducing the landing site footprint, the Mars Smart Lander will demonstrate
terminal phase hazard avoidance. The concept is to use onboard sensors to generate a terrain map
of the proposed landing site and surrounding area. The system will process the terrain data and
determine a safe zone within the scan area. If the projected landing site is deemed hazardous,
a new landing site is selected and the spacecraft automatically retargets the new site. Together,
these new technologies will allow a lander to target areas currently deemed too hazardous but are
of significant interest to the science community.

An advanced technology development program has been initiated to develop the new technologies
required to achieve the required landing accuracies for the next generation Martian landers. The



guided entry and hazard avoidance systems require accurate knowledge of the position, velocity,
and attitude (i.e., the state) of the spacecraft in real-time. Accurate state information is needed by
the guidance system throughout all entry phases: pre-parachute deploy hypersonic entry, parachute
deployment phase, and terminal guidance utilizing the main landing engines. The state information
is also required for accurate determination of the landing site location on the Martian surface.

The determination of the current state of a spacecraft maneuvering in the Martian atmosphere is the
subject of this paper. The task of the precision navigation system is to supply the current state of
the spacecraft, as well as a measure of the uncertainty associated with the current state estimate, to
the EDL systems. The proposed technique employs a recursive filter (that is, an extended Kalman
filter, or EKF) processing data provided by a strapdown IMU and aided by external sensor data.
The proposed external sensors are a scanning lidar and a phased-array radar, both of which supply
altitude and velocity data, along with the hazard detection capability. The altitude and velocity
data from both sensors are processed by the EKF.

The interaction of the aided-navigation system with the rest of the flight system is discussed. Of
particular interest is the integrated guidance and navigation system performance. Results from
simulated EDL scenarios representative of the 2007 launch opportunity will be presented. The
entry scenario considered extends from cruise stage separation to touchdown.

EDL SCENARIO

Figure 1 shows the spacecraft sequence of events for the current Smart Lander baseline scenario.
For a traditional direct-entry lander, the cruise stage separates from the entry vehicle minutes from
atmospheric interface (defined as a radius of 3522.2km from the center of Mars). However, in the
Smart Lander scenario, the cruise stage will perform a deflection maneuver after separation to
provide communication and data relay for the entry body during EDL, a Smart Lander mission
requirement. To support this requirement and to reduce the magnitude of the cruise stage deflection
maneuver, cruise stage separation is 30 minutes before atmospheric entry. The entry body does
not have external sensors or a direct-to-Earth radio link, so instead of initializing the onboard
filter with a ground-based navigation solution for the entry interface conditions as for past direct-
entry landers, a ground solution is generated for the separation time. The spacecraft state after
separation is determined by propagation using the IMU data for the spacecraft dynamics with the
ground-supplied separation state as initial conditions, a process known as dead reckoning.

After atmospheric entry, a closed-loop GN&C system is used to guide the vehicle through the
hypersonic phase to the supersonic flight phases. The Smart Lander will have a lifting entry body
(achieved via center of gravity offset or an aerodynamic trim tab), with the orientation of the
lift vector controlled by the flight software to maintain a specified flight profile. This is a major
change in Mars landers since Viking, which all have performed ballistic (zero-lift) entry, descent
and landing, and is a major contributor to the reduction in landing errors.

Once specified criteria are achieved after the hypersonic flight phase, the supersonic parachute
is deployed. Additional criteria are defined for the release of the supersonic parachute and the
deployment of the subsonic parachute. Once the subsonic parachute deploy conditions are met, the
heat shield and the backshell are released to allow the subsonic parachute to be deployed. Also at
this time, the landing legs are deployed and the external sensors become operational.

The subsonic parachute deployment marks the beginning of the terminal EDL phase. From cruise
stage separation to this point, all navigation output has been the result of dead reckoning, with no
external data available to aid the IMU. From this point, the navigation filter is aided by altitude
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Figure 1 EDL Events

and velocity data from the radar. As shown in Figure 1, this occurs at approximately 8km altitude
and 130sec from touchdown.

With the radar also providing terrain data, the hazard detection and avoidance functions begin,
which require position and attitude data from the navigation filter. The scanning lidar will begin
providing altitude and ground-relative velocity data at approximately 1500m altitude along with
terrain data for hazard detection. These systems function through subsonic chute jettison and
powered descent, stopping shortly before engine cutoff at 1m altitude. The sequence ends with a
safe touchdown.

In terms of navigation functions for the EDL problem, there are two modes. The first is a dead-
reckoning mode, which operates from cruise stage separation until the radar is operational, with
the second from the start of radar data collection through landing. An additional mode before
separation, which includes star camera data processing for attitude knowledge, may be added if
the navigation filter starts operating before cruise stage separation (which is likely), but this mode
will not be covered here. The major difference between these modes is the availability and type of
external sensor data.

SENSOR DATA

Data used by the navigation filter for propagation and update are available from several sensors.
The sensor suite for EDL includes an inertial measurement unit (IMU), a W-band phased-array



Table 1 IMU Specification

IMU Power Mass IRU (10) ACC (10) Comments
Volume Bias Stability Bias
ARW Bias Noise
Scale Factor | Scale Factor
Litton | 30W 10.4-11.8Kg 0.003 %2 0.025mg Rad hard
LN100S 28 x 28 x 17.8¢m (IRU) 0.0007% Spg Delivery in 2001
2.5(d) x2.5¢m (ACQC) lppm 100ppm No flight history
Honeywell | 34W 4.1kg 0.05%3 0.1mg Rad hard
MIMU 19.8(d) x 13.2em 0.01.%2 ~ 10ug (> 100K rads)
Sppm 175ppm
Litton 12w 0.75Kyg 3%9 1.5myg Flown on DS1
LN200 8.9(d) x8.9cm 0.15 jhi 3549 MER Baseline
100ppm 1000ppm

radar and a scanning light detecting and ranging (lidar) sensor. The radar and lidar are designed
to supply terrain data for the hazard detection and avoidance system, but the sensors will also
supply data for updating the real-time position and attitude of the spacecraft during EDL. The
emphasis of the sensor description below is on data that will be used for the latter function.

Inertial Measurement Unit (IMU)

An IMU includes an orthogonal accelerometer triad to measure velocity changes and an orthogonal
gyroscope triad to record orientation changes. The data reported from the IMU are a velocity
change vector and an attitude change vector over a specified accumulation time, referred to as the
IMU rate. The internal sampling rate can be set to a few fixed values for a particular sensor,
but the output velocity and attitude changes can be output from an IMU with greater flexibility.
Specifications for the IMUs under consideration are shown in Table 1. These IMUs are all strapdown
instruments, meaning they are rigidly attached to the spacecraft body and measure directly the
velocity and attitude changes of the vehicle.

Phased-array Radar

A phased-array radar is under development that will provide altitude and velocity data for naviga-
tion. It can also be used as a supplement to the scanning lidar for hazard detection in a nominal
scenario and can provide a backup capability to the scanning lidar. The radar is the primary semnsor
for navigation.

The proposed radar antenna location on the entry body means that the sensor is not exposed until
the heat shield is released roughly 8&m above the surface (see Figure 1), which limits the maximum
operating range required for the sensor. Once the heat shield is released, the landing legs must
be deployed and the sensor powered on before usable altitude or velocity data are available. The
radar antenna is actually an array of small antennas each collecting range data simultaneously from
different locations about the target to create a terrain map of the area.

Lidar

A lidar (light detecting and ranging) instrument is being developed as the primary sensor for hazard
detection. The instrument sequentially collects range information in a grid around a defined target
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and uses that frame of data to compute surface slopes and identify hazards around the target. Due
to the sequential data collection, the data for the scan must be corrected for spacecraft motion
during the scan, a major driver to the navigation state output rate. In contrast, the radar collects
data at each point simultaneously and thus does not need motion compensation. This sensor begins
collecting usable data at roughly 1500m altitude. The lidar will also provide altitude and velocity
measurements relative to the target landing site.

For both the lidar and the radar, the method for computing altitude and surface-relative velocity
for navigation from the collected data has not been finalized. For the current navigation filter,
generic altitude and velocity measurement models will be used as placeholders for models that
represent the final sensors with accuracies consistent with the design values. These generic models
will be described later.

FILTER MODELS

Based on the EDL scenario described above, a set of filter models has been identified for develop-
ment. Some of these models are dependent on sensors that are still under development and are
more generic, while others are more mature. The set of models are described below, along with the
set of filter parameters.

Filter State Vector
The state vector X includes all parameters that are solved for by the EKF and is written
T
X=[r v 6 Bop B. m B |

where the subvectors of X are defined in Table 2. The state vector will contain elements for
estimated inertial position, inertial velocity and attitude. The remaining elements of X represent
additional parameters that may be required based on sensor modeling assumptions and are not
final.

Propagation Equations

Values for the state parameters above are computed at specified times based on initial values and
mathematical models of the environment they represent. These propagation equations can be
represented as first-order differential equations, as shown for the complete state vector:

. . R . . T

X=[# v 6 By B. 1 By |
For this implementation, most of the propagation relations are more naturally represented as dis-
crete linear equations. The exceptions are the position and velocity elements, which are represented
as first-order nonlinear differential equations since the gravitational acceleration (which cannot be

measured by an accelerometer) must be computed. The complete set of propagation equations are
described below.

Attitude propagation

The accelerometer and gyro data are used by the navigation filter to propagate the position, velocity
and attitude in time. The approach for attitude propagation is discussed first, since the trajectory
propagation depends on attitude.

The attitude is propagated as a scalar-last quaternion. The quaternion is based on the idea that an
axis of rotation exists between two coordinate frames such that the rotation can be represented by



Table 2 State Vector

“ n l Symbol ‘ Element | Units ] Comments J
1 r(1) X Position m MCI frame, Cartesian
2 r(2) Y Position m MCI frame, Cartesian
3 r(3) 7Z Position m MCI frame, Cartesian
4 v(1) X Velocity m/s | MCI frame, Cartesian
5 v(2) Y Velocity m/s | MCI frame, Cartesian
6 v(3) 7Z Velocity m/s | MCI frame, Cartesian
7 0(1) X A Attitude rad Body frame
8 0(2) Y A Attitude rad Body frame
9 6(3) Z A Attitude rad Body frame
10 | By(1) X Gyro Bias rad TBD Parameter
11| Be(2) Y Gyro Bias rad TBD Parameter
12 | By(3) Z Gyro Bias rad TBD Parameter
13| B.(I) | X Accelerometer Bias | m/s? TBD Parameter
14| B.(2) |Y Accelerometer Bias | m/s* TBD Parameter
15| B.(@3) | Z Accelerometer Bias | m/s® TBD Parameter
16 | m(1) Surface Slope 1 rad (7) TBD Parameter
17 m(2) Surface Slope 2 rad (?) TBD Parameter
18 By, Altimeter Bias m TBD Parameter

a single angular rotation. A quaternion defines an axis of rotation (3 components) and a rotation
angle about that vector (1 component). The inertial to body quaternion ¢, is used here to replace
the 3 x 3 inertial to body transformation matrix C,. The components of the quaternion are

T
qn - [ qnl (]’n-z QRs qn.; ]
where ¢, , ¢n, and gn, represent the vector direction and ¢, represents the rotation angle.

The data from the IMU are an angular change in the axes of the spacecraft coordinate frame,
denoted 86, or the angular change in attitude measured in the body frame from ¢,_; to ¢,. With
this information, the following quantities are defined:

60, =6, —0,_,
T
50, = [ 80, 8., 06, |

801, = 661 + 60,

These definitions are used to describe the process.
The first step is to add the estimated gyro bias By to the raw angle data output:
86, = 59nmw + By

The attitude data from the IMU is then converted to a quaternion 8¢,, representing the angular



change 60 in body coordinates, using the relation

r 5021 T
2
5q21 5021/
5Q2 - (Sl]g2 — _2_
é
. §6%,, + 603, + 663,
L. 1- = 329 = N

Once the quaternion representing the attitude change is determined, the complete inertial to body
quaternion at the current time ¢y is computed using the inertial to body quaternion from the
previous time %;:

%2 = 8q2q1

where quaternion multiplication is defined as

91,92, t Q1592 — 912925 + Q1,924
—G1392, + 91492, + 1,92, + 91,92,
91,92, — 91,92, + 91,925 + G192,
41,92, — 91,92, — 91392, + 91,92,

q1492 —

An additional angular correction is applied to the quaternion after each filter update. This correc-
tion is due to the estimated attitude. This correction is applied to the attitude once per update.
The relations used for this update are similar to those used for the propagation:

qT-II,_ = 5qaestq7:
- gxec -
——ZZLL
ey
6qoest = 9

est

Zest

1 . ezfest + HZest + ezest

In order to use the attitude quaternion for coordinate rotations from the body frame to the Mars
centered inertial frame, the quaternion must be converted to a rotation matrix. The relation used
to compute the rotation matrix C,, from a quaternion g, is:

q?z,l - q'r2tz - Qrzz,e + q’?L4 2qﬂ1 qnz + Qqng q'n4 2q711 Gns — 29’n2 qn4
C, = 2Gn, Gy — 24, Gny _%211 + qu - 933 + quu 20, Gns + 2¢n, 4n, ,
29n, ng + 2qn,y qn, 290y Gns — 2qn, gn, “‘%%1 - ng + ‘7172;3 + Ay,

Trajectory propagation

The trajectory propagation is performed using a set of nonlinear differential equations, as described
earlier. The differential equations for the trajectory calculation with time are:

Y = v(t)
b(t) = Cpqlass + Ba) + ag(r)



where r is the Cartesian position vector, v is the Cartesian velocity vector, w is the Cartesian
angular rate, C§ is the body to inertial rotation matrix, a,y is the measured acceleration in body
coordinates, B, is the computed accelerometer bias and a,(r) is gravitational acceleration.

The propagation of the spacecraft position and velocity is done in a Mars centered inertial co-
ordinate frame. Because of this, the velocity change from the IMU must be rotated from the
body frame to this inertial frame. This transformation is computed using the attitude update
relationships described in the previous section.

The accelerometer output is the accumulated acceleration over a specified time interval. The
spacecraft velocity change reported by the IMU from time ¢,,_; to ¢, is denoted dv,,. It is important
to note that the reported value does not include gravitational acceleration. The gravitational
acceleration must be computed separately added to the velocity change from the IMU to get the
correct total acceleration.

The rotation of dv, to inertial coordinates is performed using the attitude at the midpoint of the
interval t,_; and ¢,. This is approximated using the attitude quaternion at the beginning of the
accumulation time ¢, and performing an update with half the accumulated attitude change 68,
denoted 86,,4,:

9mid, = 5Qmidnq”.—1
51::; = Crid,, 00y,
To compute the updated position and velocity at ¢,, the value 5v£_1 is also required. Due to the

recursive nature of the propagation, this value is available from the previous update. For the
current software, the velocity is converted to an acceleration, the specific force acceleration a, I

svl
N
At - tn had tn——l

To get the total acceleration, the gravitational acceleration must be computed and added to a; in
and asy, . For gravity terms up to J, the acceleration due to gravity can be computed using

zn 1 — ng (%)2 (5sin? L, — 1)

2
ag, = —4o |y, (1-,2 () (5sin® L, — 1)

r

S

2 (1- 122 (22) (55in? L, - 3)

T . Zn
""n:[xn Yn Z’n] rnZ\/ﬂ«“%-i-y%-!-Z% SlnLn:r_
n

where 1 is the gravitational parameter for Mars, J; is a gravity coefficient for Mars determined by
observation, L, is the geocentric longitude at time ¢, and r. is the equatorial radius of Mars. The
position and velocity at ¢,_; is required, but this information is available from inputs (if they = to)
or from propagation over the previous time step. However, the position at ¢, is the desired output
from the current propagation, but is required to compute the gravitational acceleration needed for



the propagation. To compute a,,, an approximate value for the position at t, is determined using
the position, velocity and total acceleration at ¢,_1:

1
Tpred,, = Tn—1 + v, AL+ i(asfn__1 + agn_l)At27 At = (tn - tn—l)
The total acceleration a;,; is thus:

atOtn—-l = asfn..1 + agn—-l

Aiot, = Qsf,, + Qag,

2
Tpred, | 1 — Jg% ( Le ) (5 sin® Lprea, — 1)

Tpredy,
a,, = —— . 1—Jp2 ——r£—2(5sin2L - 1)
In r3 Ypred,, 23 Tpredy, pred,
pred, 9
3 (te 5sin® L 3
Zpredn 1— J2'2' Tored, (O Sin pred, ¢ )

With the total accelerations computed, the trajectory update is performed using a trapezoidal
integration:

At

Uy = Up-1 -+ (atotn_l + atot,;)?
At
rn =11+ (vn+ Un——l)_Q‘

Bias Parameter Propagation

The remaining terms in X represent various sensor-related biases that are estimated in the Kalman
filter. There are two types of noise models currently supported, namely a constant bias and a
exponentially correlated random variable (ECRV) or first-order Markov process. The ECRYV is a
random variable whose autocorrelation function decreases exponentially with time. Depending on
the error model chosen, the propagation model will change.

For a constant bias, the differential equation is simply
z=0

or, in discrete form,
Tntl = Ty

This model is available for all bias modeling, but will mostly be used for the surface slope and
altimeter bias errors. The only required input for this model (aside from error modeling, which is
discussed later) is an initial value (usually set to zero).

Por the ECRV model, the differential equation is
) 1
T=——z4w=-Ffr+w
T
where 7 is the time constant used to define the decay rate and w is white noise. In discrete form,
Ty = 6“ﬂ(tn+1"tn)xn -+ Wy,

This model is also available for all bias modeling, but will primarily be used with the accelerometer
and gyro bias models. The required input (apart from the error modeling) is the time constant .



Both error models, in discrete form, can be written as

Tpgl = (pn.n-{—lmn + Cptn

8 1 for bias . = 0 for bias
nntl T ) g=Bltn+1=te)  for ECRV "7 11 for ECRV
where ¢, ,11 is the state transition matrix (described below) for time propagation of z, from ¢,

to tn+1.
State Transition Matrix calculation

The state transition matrix (STM, @) is a linearized propagation matrix for the filter state vector.
While not used to propagate the trajectory or the attitude, it is used to propagate the state error
covariance from one filter update time to the next. It is also used to propagate the noise parameters
between filter update times, as previously discussed.

The data required to compute the STM are the inertial position, velocity, acceleration and body
to inertial rotation matrix at times f,_; and ¢,, along with 68, and possible bias model values, all

defined earlier.

Most of the STM is computed by integration of the partial derivatives of the propagation equations
with respect to the estimated state vector, defined as F. The integration performed, as before, is

a trapezoidal integration represented as:

At At?

S, =TI+ (Fp4 +Fn)7+FnFn—1—2“—

where ®,,_1,, is the STM from t,.1 to &, I is an identity matrix with the same dimension as
®,_1 ., F, and F,_; are F matrices evaluated at ¢, and t,_1, respectively and At =1, — t,-1.

Evaluation of F requires examination of the equations of motion for inertial navigation. The
equations for trajectory and attitude calculation were presented carlier. The elements of F' are the
derivatives of X with respect to the state vector X defined earlier. For the purposes of defining
the elements of F, it is convenient to define F in terms of submatrices, as shown:

3K3 3X3 3X3 3x3 3x3 3X2 3x1
(SR FRT P Fap, Fogo Fop,
3%x3 3Xx3 3x3 3x3 3x3 3xX2 3x1
F'[;r F; Fz'zo Fi;Bg Fi'Ba Fi}m F'[)Bh

F3x3 F3x3 FZ‘?XS F:§><3 F:?XS F?gXQ F3><1
or 80

F= 8X _ F3‘X3 Fg’l;(:i F3-X3 F3?XB36 F3'9><B;a 30;’12 F3i(B1’L
COX | B S s pess’ poda pods gt
Bor Bav Bg6 BaBg BuB, Bam Bth

1x3 Fl?(3 F1?<3 1x3 1x3 1x2 1x1
L BhT Bhu Bh0 FBth FBhBa FBh’m. FBhBh o

where for each F1™, a is the set of n differential equations whose partials with respect to each of
m elements of b are computed, with the resulting submatrix of dimension n X m. Recall that each
row of F corresponds to a propagation equation, and each column of F corresponds to an element

of the state vector defined earlier.

The values of F corresponding to the r(t) equation are all zero, except for the partial with respect

to the spacecraft velocity:
Fiy = Isxs

10



The partials of v(t) with respect to X are more complicated. Using the differential equation for
©(t) and computing variations,

§9(t) = Chéal + (6CE)Cha? + saB(r)

The only term dependent on r is 5af (r). Using the point-mass only definition of gravitational
acceleration, the partials are:

1_3_ﬁ _3zy _3xz

p r2 7‘2 '?Z—
Fo=f| Mo Wt
_3zz _M 1322

r? r? r?

where p is the gravitational parameter for Mars. The partial with respect to v is zero:
Fy = 0343

The partial with respect to 6 depends only on the small variations in the attitude, or (§C%)CL Ba

The term §C% can be obtained by writing C% in terms of Euler angles and making small angle
approximations. With all three terms expanded:

[ 1 63) -62) 1[Cu Ci Cis age(l)
(50{3)0%&5 = —0(3) 1 0(1) 021 022 023 ag(Q)
| 6(2) -0(1) 1 || Cx Cs Css a(3)

[ 1 63) —6(2) ] Fasf(l)
= | =0 1 e || )
9(2) -0(1) 1 ]| af(3)

ags(1 )+9(3) sf(2) —9(2)asf(3)
= —9 3)asf( )+asf(2)+9( )a sf(3)
9(2)asf(1) (1)asf ) + asf (3)

Taking the partial with respect to @ gives the resulting submatrix:

10

0 —“ff 3) agf (2)
Foo= | al(3) 0 —agz (1)
_asf(2) a.gf(l) 0

The partial with respect to the gyro bias By is zero:
Fip, = 0343

The partial with respect to the accelerometer bias is changed by variations in the acceleration, or
CB(San The resulting matrix is:

’UB(L CB

The remaining velocity differential equation terms are zero.

The remaining differential equations are for parameters that are modeled as biases or ECRVs. For
these terms, the partial derivatives are not a function of other elements in the state vector, so the
only nonzero terms will be along the diagonal, or Fg g, Fp.p,» Fram and Fg B . The diagonal
value of each element in these submatrices will by 0 for the bias parameters and —1 - for the ECRVs.
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Covariance Propagation

With the state transition matrix computed as above, the necessary pieces to propagate the state
covariance matrix in time are available. The relationship used to propagate the covariance from
t;_1 tot; is
- HaT
P§ )= q"i—l,ipg-iéi—l,i +Q;_4

where P! refers to the covariance matrix before measurement update, P refers to the covari-
ance matrix after measurement update, ® is the state transition matrix defined above and @ is the
process noise covariance.

Due to the long dead reckoning propagation required for this application, additional fidelity in the
process noise is desired. Instead of direct numerical input of the parameters in Q, relationships
between the accelerometer and gyroscope errors specified in Table 1 and the state vector terms
were developed. This formulation will be reported in a future paper. This allows for sensitivity
analysis based on the IMU specifications shown in Table 1 for the instruments under consideration
and a more accurate representation of the dead-reckoning error growth.

Generic Sensor Models

Since the filter under development is intended for use with the Mars Smart Lander, sensor models are
needed that accurately represent the actual sensors. Since the sensors are still under development,
generic altimeter and velocity measurement models have been developed for analysis purposes.

For the altimeter, the model is a scalar distance from the spacecraft to the proposed landing site.
The measurement model used is

Boge = /P (D)2 +7(2)? + 1(3)% = Fyianet + B,

where r() are the spacecraft Mars-centered inertial position components, rpunet is the distance
from the center of Mars to the landing site and By is a bias on the altimeter measurement. The
measurement partials, based on the state vector defined earlier, are

0 T v (s
Hi=gx =% ¥ % 000 1]

The content of the velocity measurements returned by both sensors is currently under development.
Each sensor will determine the vertical velocity along with velocity normal to the beam direction.
As a first cut at a model, it is assumed that a vector velocity relative to the landing site in inertial
coordinates is returned, or

X(4) —us(1)
hVobs =v—vs = | X(5) — vs(2)
X(ﬁ) — ’013(3)

where vs, is the inertial velocity of the spacecraft and vy, is the inertial velocity of the landing site.
For the Mars-centered inertial frame assumed here,

T
Vg = Wy X P wm:[O 0 wm]

where 7;; is the inertial position of the landing site and w,, is the rotation rate of Mars. The
inertial frame assumed here is the same as that for the estimated state, so the inertial velocity of
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the spacecraft above will be the velocity in the estimated state, as defined in Table 2. The partials
for this measurement are

o 0001000 - 0
Hvza—)},:O()OOlOO‘O
0000010 -+ 0

Update Equations

Referring again to Figure 1, there is a period after heat shield release and before touchdown where
sensor data are collected using the sensors described above. Information from these sensors is used
to update the state vector. The final formulation of the update equations used is still in progress,
but a standard update formulation has been implemented for testing. The relations used for the
update in the current formulation are

K; = PHI(H,POHT + R)™!
PM = (I-KH)PO(I-KH) + K;RKT
X = X4 Ky - k(x))

where K is the Kalman gain used for the update, y is the observation vector and y; — h; (Xg—))
represents the measurement residual at time .

FILTER ARCHITECTURE

The navigation filter under development for Mars Smart Lander has been targeted for several dif-
ferent simulation environments, which requires an architecture that allows the filter to be installed
in each tool with minimal interface modification. The simulation environments currently targeted
include a terminal GN&C simulation and a real-time testbed under development at the Jet Propul-
sion Laboratory, the main Mars Smart Lander high-fidelity EDL simulation environment under
development at the Langley Research Center, and the guidance design environment at the Johnson
Space Center. The general idea is to develop the navigation filter as a module with a single function
entry point, with all data required for processing passed through a well-defined function interface.

A block diagram of the proposed terminal GN&C system is shown in Figure 2. The ovals on the right
side of the figure represent environment models of interest. Interaction between the environment and
the terminal GN&C system is through the thrusters, lidar, radar and IMU boxes, which represent
simulation models of hardware systems. The remaining boxes to the left of the hardware models
represent GN&C software under development. The only information that the onboard simulation
gains from the environment is through the hardware sensors, which is important to insure separation
between the environment models and the spacecraft model. The tight interaction of navigation
(labeled Position and Attitude Estimator here) with the guidance and control functions is apparent.
The diagram for earlier phases of EDL will be similar, but will not include the lidar and radar blocks
since the sensors are not yet operational. Hazard detection and avoidance functions will also be
idle before the lidar and radar sensors become active.

A more detailed diagram of the navigation filter and sensors supplying data to the navigation
filter is found in Figure 3. Data processing is initiated by a main executive routine that calls the
navigation task when required. The standard processing procedure is that each sensor will have
one processing pass for each call to the filter, but the filter routines allow for multiple available data
points for each sensor. The interface between the navigation filter and the various sensors is a data
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Figure 2 Terminal GN&C Block Diagram

query initiated by the navigation filter routine via sequential function calls for each instrument.
If IMU data are available, the trajectory and the attitude are propagated in time based on the
latest available state vector and the IMU data. If radar or lidar data are also available, filter
updates of the state and covariance are performed using the data from each sensor. Checks are
made as well to determine if altitude measurements, velocity measurements or both are present
and processing occurs accordingly. If radar and lidar data are available for state update and no
IMU data is available for a state propagation, the data are stored until propagation data from the
IMU are available. If none of the sensors pass data to the navigation filter, no processing is done.
Measurement processing includes propagation and update of the covariance matrix and updates to
the trajectory, attitude and bias parameters.

RESULTS

The filter development effort is at the point where simulation of the dead-reckoning phase is pos-
sible, or from cruise stage separations to subsonic parachute deployment. Component testing of
the modules in the filter is under way, along with more complete simulations to support the Mars
Smart Lander design process. An example of this support is a sensitivity analysis to evaluate the
three IMUs whose specifications were shown in Table 1. The approach used for this evaluation
is a Monte Carlo analysis using a simulation at the Johnson Space Center, which is a combined
guidance/navigation testbed. Cases were run from cruise stage separation through the dead reck-
oning phase with the parameter list shown in Table 3. These entries also represent the parameters
that can be added or removed from each run to determine the impact of specific parameters on the
guidance and navigation performance.

In addition to the enhanced IMU error modeling described earlier, there are techniques available
to improve the performance of dead-reckoning propagation. The majority of the error is due to
uncertainty in the calibration of the accelerometers and gyros, so two techniques are used to reduce
the impact of this error. The first is to reject IMU output when the sensed attitude or velocity
change is below a certain value, usually specified as a percentage of the nominal bias. This process,
known as thresholding, allows the removal of IMU output to the integrator that is due to noise
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Table 3 Sensitivity Analysis Parameters

Number I Component ]lNumber L Component Jﬂ
1 X Nav 29 Gyro Misalign 5
2 Y Nav 30 Gyro Misalign 6
3 Z Nav 31 Rotation 1 Nav
4 Vx Nav 32 Rotation 2 Nav
5 Vy Nav 33 Rotation 3 Nav
6 Vz Nav 34 X Env
7 Accel X Case Bias 35 Y Env
8 Accel Y Case Bias 36 Z Env
9 Accel Z Case Bias 37 Vx Eav
10 Accel Misalign 1 38 Vy Env
11 Accel Misalign 2 39 Vz Env
12 Accel Misalign 3 40 Rotation 1 Env
13 Accel Misalign 4 41 Rotation 2 Env
14 Accel Misalign 5 42 Rotation 3 Env
15 Accel Misalign 6 43 CG X Eav
16 Accel X Case SF 44 CGY Env
17 Accel Y Case SF 45 CG Z Env
18 Accel Z Case SF 46 CG X Nav
19 Gyro X Case Bias 47 CG Y Nav
20 Gyro Y Case Bias 48 CG Z Nav
21 Gyro Z Case Bias 49 Aero
22 Gyro X Case SF 50 Accel X Case Noise
23 Gyro Y Case SF 51 Accel Y Case Noise
24 Gyro Z Case SF 52 Accel Z Case Noise
25 Gyro Misalign 1 53 Gyro X Case Noise
26 Gyro Misalign 2 54 Gyro Y Case Noise
27 Gyro Misalign 3 55 Gyro Z Case Noise
28 Gyro Misalign 4
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Figure 3 Navigation Filter Data Flow

only. Care is needed to select values consistent with the problem being solved to remove only
data that is noise only but retain sensitivity to small signals. For this case, the IMU output will
be small between separation and atmospheric interface since the only activity is thruster-based
attitude maintenance to within a specified attitude deadband. The thresholds must be set low
enough to sense the atmosphere as early as possible, but high enough to eliminate noise-only IMU
output. The values to be used are still under investigation. The second error reduction technique is
to assume calibration of the IMU biases before separation. This places some assumptions on when
the IMU is turned on relative to separation and the availability of external data before separation.
The approach assumed here is that the IMU is turned on at the latest before the final midcourse
maneuver for accelerometer calibration and that star camera data is available for calibration of the
gyro biases at a minimum from the final midcourse maneuver to separation. Although calibration is
likely to be in the baseline plan, analysis of performance without calibration is needed. In the same
way, thresholding will most likely be included in the flight code, but analysis with and without it
will be done.

Sensitivity analysis has been performed for two types of results, referred to as navigation results and
delivery results. Navigation results are those for the filter alone, or assuming perfect guidance, with
comparison between the navigation and the environment truth states. Delivery results are those
with guidance included, with comparisons between the navigation and the guidance truth states.
Results for propagation from separation to the end of the dead-reckoning phase with the LN-100s
IMU are tabulated in Table 4 for the major contributors to the position and velocity errors. These
results assume that thresholding and calibration of the biases has been done. Comparisons of the
case with all errors active are made as percentage reduction in the overall position and velocity
errors when the specified parameter is assumed to contribute no error. For reference, the RSS
position error with all parameters active is 1,500m and the RSS velocity error is 4%, In terms
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Table 4 Change from full case for each parameter set using the LN-100s

Input Error Component % Drop in % Drop in
Deck Removed Position Error | Velocity Error
2 Initial NAV pos. & vel. 39.7% 3.5%
9 NAV initial attitude 3.1% 23.1%
11 Delivery attitude 3.4% 24.2%
17 All IMU errors 9.8% 1.0%

of position error, the major contributors are the errors in the initial position and velocity before
separation, with the aggregate IMU error second. For velocity error, the major contribution is from
attitude error.

Analysis using the Honeywell MIMU has also been performed, but the results are not presented
here. The general trends seen with the LN-100s results above follow, but the IMU error contribution
is larger, as is the overall error at the end of the simulation. As a percentage, the IMU error and
initial navigation position and velocity error contributions are closer in magnitude than for the
LN-100s.

FUTURE WORK

The sensitivity analysis above is just the beginning of the analysis required to understand the
navigation problem for EDL. In addition to the sensitivity analysis described above for the dead
reckoning phase, additional performance testing is required. For example, this analysis does not
include the other elements of the onboard algorithms, namely guidance and control, which will
contribute additional error to the overall knowledge of the spacecraft state.

In addition, the processing of external measurements has been developed but not tested in an
integrated sense. This addition will allow for end-to-end simulation of EDL. Sensor models that
accurately represent the proposed systems are under development along with the hardware. These
issues will be addressed with the development of an end-to-end simulation capability, culminating
in a hardware-in-the-loop testbed running candidate flight software.
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